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Abstract—We have examined the coupling reactions of 2-thioindoles with vinyl diazoacetates in the presence of Rh(II) catalysts.
While attempted enantio- and/or diastereoselective couplings using chiral catalysts and/or chiral auxiliaries on the vinyl
diazoacetate have been largely unsuccessful, substrates having resident chirality on fused thiopyrans gave thioindolines with
moderate to high diastereoselectivities. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The presence of C(3) quaternary substitution in a vari-
ety of indolines containing natural and non-natural
products has inspired a number of groups, including
ours, to develop new and improved routes for their
synthesis.1–3 Our interest in this area is the result of our
ability to generate quaternary substituted thioindolines
from the coupling of vinyl diazoacetates with 2-thio-3-
alkylindoles in the presence of Rh(II) (Scheme 1).4

Presumably, 5 results from a [3,3]-sigmatropic rear-
rangement of sulfur ylide 4.5,6

While pleased with our results thus far, we realized that
the application of the 1�5 transformation to the syn-
thesis of interesting indoline containing targets was
dependent upon our ability to extend its scope to
include the synthesis of diastereomerically and/or enan-
tiomerically enriched substrates. Herein, we report the
results of our preliminary efforts to address this issue
through the use of chiral substrates and chiral catalysts.

In spite of the fact that only modest levels of enantiose-
lectivity have been observed when chiral catalysts have
been used in related oxygen and sulfur ylide-induced
[2,3]-sigmatropic rearrangements,7 we decided to
explore the effect of chiral catalysts on our coupling
reaction. As outlined in Table 1, chiral Rh(II) and
Cu(I) catalysts gave disappointing results; we isolated
indoline 8 in moderate to low yields and with low levels
of enantioselectivity when 6 was exposed to
78 and Rh2(DOSP)4 9,9 Rh2(S-TBSP)4 10,9 or
Cu(I)bisoxazoline (from Cu(CH3CN)PF6 and bisoxazo-
line 11).10

In addition to chiral catalysts, we have also examined
the effect of chiral substrates on the coupling reaction.
As depicted in Table 2, when tryptamide 6 was exposed
to pantolactone vinyl diazoester 1211 and either
Rh2(OAc)4 or Rh2(TBSP)4, we isolated indoline 13 as a
less than satisfactory 2:1 mixture of diastereomers,
which could not be improved upon regardless of the
reaction conditions.

Scheme 1.

* Corresponding author. E-mail: rainier@chem.utah.edu

0957-4166/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0957-4166(03)00077-6

mailto:rainier@chem.utah.edu


A. V. No�iko� et al. / Tetrahedron: Asymmetry 14 (2003) 911–915912

Table 1.

Conditions Yield (%) e.r.a Catalyst Conditions Yield (%) e.r.aCatalyst

Solvent Temp. Solvent Temp.

CH2Cl2 Rt 83 – Rh2(S-TBSP)4Rh2(OAc)4 CH2Cl2 Rt 28 62:38
CH2Cl2 Rt 68 62:38Rh2(S-DOSP)4 Rh2(S-TBSP)4 PhCH3 Rt 0 –

Rh2(S-DOSP)4 CH2Cl2 0°C 36 61:39 Rh2(S-TBSP)4 PhCl Rt 60 62:38
Rh2(S-DOSP)4 CH2Cl2 −30°C 0 – Rh2(S-TBSP)4 CHCl3 Rt 41 58:42

PhH Rt 21 –Rh2(S-DOSP)4 Rh2(S-TBSP)4 CH3CN Rt 5 62:38
PhCl Rt 59 62:38 Rh2(S-TBSP)4 THF RtRh2(S-DOSP)4 0 –
CHCl3 Rt 50 59:41Rh2(S-DOSP)4 Rh2(S-TBSP)4 Et2O Rt 62 59:41

Rh2(S-DOSP)4 CH3CN Rt 65 63:37 Cu(CH3CN)PF6, 11 PhH Rt 9 53:47
Et2O RtRh2(S-DOSP)4 45 60:40 Cu(CH3CN)PF6, 11 CH2Cl2 Rt 10 53:47
THF Rt 0 – Cu(CH3CN)PF6, 11 CH3CN Rt 24Rh2(S-DOSP)4 53:47

a Measured using a Chiralcell OD HPLC column.

Table 2.

Conditions Yield (%) d.r.aCatalyst

Solvent Temp.

CH2Cl2Rh2(OAc)4 Rt 16 2:1
Rh2(OAc)4 ClCH2CH2Cl 83°C 89 2:1

CH2Cl2 RtRh2(S-TBSP)4 29 2:1
CH3CN Rt 21Rh2(R-TBSP)4 5:3

a Ratio was determined from integration of the vinyl signals in the crude 1H NMR spectra.
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Having had little success with chiral catalysts or chiral
vinyl diazoacetates,12 we opted to investigate chiral
indoles where the chirality would reside on a thiopyran
ring fused to the indole (e.g. 14). These studies were
made all the more compelling by the ready availability
of thiopyran ring systems having substitution �-, �-,
and �- to sulfur and by the notion that the thiopyran
might prove useful in its own right subsequent to the
coupling reaction (Fig. 1).13

Our initial experiments examined the coupling of a
�-substituted thiopyran, tryptophan derivative 15.14

The coupling of 15 with vinyl diazoacetate 7 in the
presence of Rh2(OAc)4 resulted in the generation of
indolines 16 and 17 as a 2:1 mixture of diastereomers in
90% overall yield (Scheme 2).15–17

From the notion that the position of the stereogenic
center might be important, we also examined �-substi-
tuted thiopyran 18.18 The coupling of 18 with 19 gave a

2.3:1 mixture of indolines 20 and 21 in 82% overall
yield.19 Surprisingly, the vinyl group was positioned syn
to the thiopyran substituent in the major diastereomer
(Scheme 3).20

Having examined �- and �-substituted thiopyrans, we
next investigated the influence of substitution at the
position �- to sulfur. Clearly, if the selectivity was
dependent upon the diastereoselective formation of a
sulfur ylide intermediate, �-substitution should have an
impact. In order to test this notion, the previously
unknown �-methyl thiopyran 25 was synthesized in
racemic form via the route outlined in Scheme 4. Alkyl-
ation of ethyl acetoacetate with gramine21 was followed
by decarboxylation and reduction to give 24.22 Dis-
placement of the mesylate from 24 with KSAc gave 25
following hydrolysis23 and oxidative cyclization of the
resulting acyclic thiol using I2 in DMF.

Thioindole 25 was subjected to vinyl diazoacetate 7 and
Rh2(OAc)4 at rt (Eq. (1)). We were extremely pleased to
isolate thioindoline 26 as a >95:5 mixture of
diastereomers in 81% yield (Eq. (5)).24,25 The success of
this experiment is exciting to us for two reasons: firstly,
it demonstrates that thioindole-vinyl diazoacetate cou-
pling reactions can be used to generate indolines with
high stereoselectivity and secondly, from this result it
appears likely that the mechanism presented in Scheme
1 is accurate. This finding will undoubtedly play a
significant role in our use of this transformation in
chemical synthesis.

Figure 1.

Scheme 3.Scheme 2.

Scheme 4.
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2. Conclusions

In conclusion, the coupling of thioindoles with vinyl
diazoacetates in the presence of Rh(II) gives the corre-
sponding indolines in high yield and high diastereose-
lectivity depending upon the substrate. While we have
been unable to find a chiral catalyst or a chiral dia-
zoester capable of influencing the enantio- or
diastereoselectivity of the reaction, we have found a
successful method by utilizing a chiral thiopyran. We
are continuing to explore these reactions and will report
our efforts in due course.
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